时间:2025-10-08 03:55:37 来源:网络整理编辑:娛樂
If the past few years have taught us anything, it's that algorithms should not be blindly trusted.Th
If the past few years have taught us anything, it's that algorithms should not be blindly trusted.
The latest math-induced headache comes from Australia, where an automated compliance system appears to be issuing incorrect notices to some of Australia's most vulnerable people, asking them to prove they were entitled to past welfare benefits.
Politicians and community advocates have called foul on the system, rolled out by Australia's social services provider, Centrelink.
SEE ALSO:Facebook reveals how many times governments requested data in 2016Launched in July, the system was intended to streamline the detection of overpayments made to welfare recipients and automatically issue notices of any discrepancies.
The media and Reddit threads have since been inundated with complaints from people who say they are being accused of being "welfare cheats" without cause, thanks to faulty data.
The trouble lies with the algorithm's apparent difficulty accurately matching tax office data with Centrelink records, according to the Guardian, although department spokesperson Hank Jongen told Mashableit remains "confident" in the system.
"People have 21 days from the date of their letter to go online and update their information," he said. "The department is determined to ensure that people get what they are entitled to, nothing more, nothing less."
Independent politician Andrew Wilkie accused the "heavy-handed" system of terrifying the community.
The siren call of big data has proved irresistible to governments globally, provoking a rush to automate and digitise.
"My office is still being inundated with calls and emails from all around the country telling stories of how people have been deemed guilty until proven innocent and sent to the debt collectors immediately," he said in a statement in early December.
The situation is upsetting albeit unsurprising. The siren call of big data has proved irresistible to governments globally, provoking a rush to automate and digitise.
What these politicians seem to like, above all, is that such algorithms promise speed and less man hours.
Alan Tudge, the minister for human services, proudly announcedthat Centrelink's system was issuing 20,000 "compliance interventions" a week in December, up from a previous 20,000 per year when the process was manual. Such a jump seems incredible, and perhaps dangerous.
As data scientist Cathy O'Neil lays out in her recent book Weapons of Math Destruction, the judgments made by algorithms governing everything from our credit scores to our pension payments can easily be wrong -- they were created by humans, after all.
The math-powered applications powering the data economy were based on choices made by fallible human beings. Some of these choices were no doubt made with the best intentions. Nevertheless, many of these models encoded human prejudice, misunderstanding and bias into the software systems that increasingly managed our lives. Like gods, these mathematical models were opaque, their working invisible to all but the highest priests in their domain: mathematicians and computer scientists.
These murky systems can inflict the greatest punishment on the most vulnerable.
Take, for example, a ProPublicareport that found an algorithm being used in American criminal sentencing to predict the accused's likelihood of committing a future crime was biased against black people. The corporation that produced the program, Northpointe, disputed the finding.
O'Neil also details in her book how predictive policing software can create "a pernicious feedback loop" in low income neighbourhoods. These computer programs may recommend areas be patrolled to counter low impact crimes like vagrancy, generating more arrests, and so creating the data that gets those neighbourhoods patrolled still more.
Even Google doesn't get it right. Troublingly, in 2015, a web developer spotted the company's algorithms automatically tagging two black people as "gorillas."
Former Kickstarter data scientist Fred Benenson has come up with a good term for this rose-coloured glasses view of what numbers can do: "Mathwashing."
"Mathwashing can be thought of using math terms (algorithm, model, etc.) to paper over a more subjective reality," he told Technical.lyin an interview. As he goes on to to describe, we often believe computer programs are able to achieve an objective truth out of reach for us humans -- we are wrong.
"Algorithm and data driven products will always reflect the design choices of the humans who built them, and it's irresponsible to assume otherwise," he said.
The point is, algorithms are only as good as we are. And we're not that good.
You will love/hate Cards Against Humanity's new fortune cookies2025-10-08 03:54
比賽日:比勒菲爾德02025-10-08 03:31
血脈僨張!曼城聖徒上演進球大戰 13分鍾狂轟5球2025-10-08 03:15
世界俱樂部排名 :利物浦一年掉到第17 國米高居第32025-10-08 03:08
Old lady swatting at a cat ends up in Photoshop battle2025-10-08 02:38
江蘇隊助教辟謠蘇寧補工資 球隊 :員工合同不受法律保護2025-10-08 02:28
吳曦有效提升申花實力 球迷盼其為球隊再贏冠軍獎杯2025-10-08 02:25
高接低擋 !納瓦斯9獻精彩撲救 拒梅西點球無愧MVP2025-10-08 02:04
Pole vaulter claims his penis is not to blame2025-10-08 02:03
曝吳曦更傾向加盟申花 廣州隊沒有具體引進動作2025-10-08 01:50
Honda's all2025-10-08 03:50
浙江隊:若升入中超首要目標保級 全隊身價聯賽墊底2025-10-08 03:06
卡塔爾參加歐預賽主場移至匈牙利 將戰愛爾蘭盧森堡2025-10-08 02:57
國安所在小組仍未敲定舉辦地 東亞區附加賽亦延期2025-10-08 02:53
Chinese gymnastics team horrifies crowd with human jump rope2025-10-08 02:46
深度解讀:吳曦零轉會費降薪加盟 崔康熙點將排名第一2025-10-08 02:38
德媒:阿拉巴肌肉受傷缺席訓練 可能缺戰不萊梅2025-10-08 02:18
吳曦下周一到康橋基地報到 申花將再次全封閉訓練2025-10-08 02:17
Michael Phelps says goodbye to the pool with Olympic gold2025-10-08 01:56
曝吳曦基本無緣加盟上海海港 球隊從未接觸吉翔2025-10-08 01:44